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Abstract-The basis of the finite element method of solution to a partial differential equation, and the 
associated numerical procedure, are outlined. The method is then applied to a convection heat transfer 
problem. This problem consists of determining the temperature distribution and the axial variation of the 
local Nusselt number for a fluid of constant physical properties flowing between two infinite parallel 
planes, at which surface temperatures or heat fluxes are specified. The flow is hydrodynamically developed. 

The validity of the method is verified and some aspects of the method discussed. 

NOMENCLATURE s, 

-4 area; 7; 
a, b, c, functions of nodal co-ordinates; T 003 

c, 

CP 

4, 

‘;;I,, 
1, I’, 
i, j, m, 
k 
1, 
N, 

longitudinal surface temperature t, 
gradient ; 4 

specific heat at constant pressure of us 
the fluid; u+, 
hydraulic diameter, 4R; r! 
convective heat transfer coefficient ; 
a matrix defined by equation (19); >,r; 

minimization functionals; 
nodes; 
thermal conductivity of the fluid; 
length; 

distance along surface S ; 
temperature; 
ambient temperature; 
time; 
unknown function; 
x-component of velocity; 
dimensionless velocity, u/u,,,; 
volume; 
velocity; 
dimensionless Cartesian co-ordinates; 
dimensional Cartesian co-ordinates; 
*matrix; 
column vector. 

(1% 
shape function, defined by equation 

Nusselt number, hD Jk; 

normal to surface; 
a matrix defined by equation (23); 
PC&t number, RePr; 

Prandtl number, C&k; 

rate of internal heat generation; 
heat flux; 
half plate spacing; 
Reynolds number, u,,, DJp; 
position vector; 
surface; 

Greek symbols 
density of the fluid; 
area of triangular element; 
absolute viscosity of the fluid; 
dimensionless temperature (T - T,)/E; 

temperature non-dimensionalisation 
factor; 

6fi9 

1 iff= i 

0 if f # i. 

Subscripts 

W, wall ; 
e, entrance section or element; 

1057 



1058 A. 0. TAY and G DE VAHL DAVIS 

. . 
4 J, m, nodes ; 

mm, mixed mean; 
s, surface. 

INTRODUCTION 

IT IS well recognized that a physical problem 
governed by a set of differential equations may 
be equivalently expressed as an extremum prob- 
lem by the methods of the calculus of variations 
[l, 23. Thus physical problems governed by the 
two-dimensional Poisson equation 

k,$+k E+Q=O y ay2 (1) 

subject to the boundary conditions 

T= T, on& 

-kg=q onS, 

-kg = h(T - T,) on S, (2) 

may be solved by minimising the following 
integral or functional 

+ SqTdS + J(+hT” - hTT,)dS (3) 

% Sh 

with respect to the unknown function ‘I: By 
variational methods (in particular, Euler’s 
theorem), it may be shown that the satisfaction 
of equation (1) is a necessary and sufficient 
condition to render I stationary. 

Physical problems of the Poisson equation 
type have been solved numerically by the finite 
element method. An excellent description of the 
numerical procedure for these and other prob- 
lems is given in [3]. 

Although the equivalent functional for prob- 
lems involving transport phenomena are well- 
known, few attempts seem to have been made to 

apply the finite element method to such prob- 
lems. In this paper, a convection heat transfer 
problem is solved numerically by the finite 
element method. The purpose of the paper is to 
draw attention to the power and flexibility of 
the method. 

The problem considered is that of a fluid of 
constant properties flowing in steady, laminar 
motion between two infinite stationary parallel 
planes. There is no internal heat generation and 
viscous dissipation is neglected. The velocity 
profile is fully developed and hence parabolic 
(see Fig. 1). The temperature of the fluid upstream 

FIG. 1. Convective heat transfer problem. 

of the origin is uniform across the section at T,. 
Downstream of the origin, heat transfer to the 
fluid occurs. The problem is to determine the 
temperature distribution and the variation of 
the local Nusselt number along the direction of 
the flow. 

A variety of boundary conditions can be 
imposed at the two surfaces. It has been shown 
[4] that, because of the linearity of the governing 
equation, any arbitrary surface temperature or 
surface heat flux boundary condition can be 
satisfied by superimposing solutions of two or 
more of the four fundamental problems: 

A. 

B. 

C. 

One surface at a constant temperature 
different from that of the entering fluid, 
the other surface at the same temperature 
as the entering fluid; 
One surface with a constant heat flux, the 
other surface insulated; 
One surface at a constant temperature 
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D. 

different from that of the entering fluid, the 
other surface insulated; 
One surface with a constant heat flux, the 
other surface at the temperature of the 
entering fluid. 

All the fundamental solutions, together with 
those for both surface temperatures constant 
and both linearly varying, have been obtained 
using the finite element method. However, for 
the purpose of illustrating the application of the 
method to problems of this kind, only the 
results for the following boundary conditions 
will be presented: 

1. Both surface temperatures linearly varying 
T, = T, + cx 

2. One surface at constant heat flux q,,,, the 
other surface insulated. 

Theoretical solutions to these problems of 
heat transfer between parallel planes exist; they 
will be compared with the numerical solutions 
obtained by the finite element method. 

SOLUTION BY THE FINITE ELEMENT METHOD 

In general terms, the problem facing us is that 
of minimising a functional I(u) which consists of 
surface and volume integrals over the continuum 
space, with respect to an unknown function 
u(x, y, z). In order to perform the minimization 

VA 

I 
x 

FIG. 2. Division of problem region into “finite elemmts”. 

numerically, the problem region is divided into 
“finite elements” by imaginary surfaces. In three- 
dimensional problems these “finite elements” 
may take the form of tetrahedrons, octahedrons, 
etc, and in two-dimensional problems they may 
be triangles, quadrilaterals or some other 
geometrical shape (see Fig. 2). The unknown 
function u is then defined in terms of the nodal 
values of u. For a triangular element with nodes 
i,j, rn, for example, the unknown function within 
the element is defined by 

u = Niui + Njuj + N,u, (4) 

where Ui, uj, u,, which are to be found, are the 
values of u at nodes i, j, m respectively, and 
N, Nj, N, are known “shape” functions of the 
nodal co-ordinates which must ensure the 
uniqueness and continuity of U. The equivalent 
functional is then a function of the nodal values 
Ui which can now be obtained by minimising I 
with respect to Ui, that is by setting 

al 
-_= 
aui 

0 

for all i. 
The functional Z may be expressed as a 

summation of elemental values of I, denoted by 
I’, that is 

I = c le. (5) 
e 

Equation (5) is true if u and all its derivatives up 
to the (n-1)th order are continuous and finite at 
the interface between adjacent elements, where 
n is the highest order of the derivative of u 
appearing in I. 

Hence, the solution is obtained by setting 

for all i. Only elements for which i is a node need 
be considered in the summation. For all other 
elements, I” is independent of Ui. Equation (6) 
will yield one equation for each node, giving 
rise to a set of simultaneous equations in ui equal 
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in number to the total number of nodes. Where 
boundary conditions involve specified nodal 
values of u at the boundary, say U, at mode k, 
the set of simultaneous equations needs to be 
modified accordingly so as to force uk = U,. 
The nodal values ofu are then obtained by solving 
the set of simultaneous equations for Ui. 

APPLICATION OF THE FINITE ELEMENT 
METHOD TO CONVECTION HEAT TRANSFER 

(a) Theory 
The governing equation for the problem 

considered here is the energy equation with the 
dissipation term neglected, which may be written 
in vector form as: 

pCP(g + v.‘VT)V.(kVT) + Q(v,t) (7) 

subject to 

T = T, on surface S, 

- kVT = q on surface S,. (8) 

It has been shown [2] that the equivalent mini- 
mization functional is 

I’(T) = s[&,(g + v.O’i)T 
r, , 

+ ;(VT)’ - QT 1 s dV + (q. n)TdS. (9) 

s, 

T is the stationary value of T and, hence, not 
subject to variation. It is the solution of the given 
problem. 

For the situation described in Fig. 1 the 
energy equation reduces to 

and the equivalent minimization functional to 

I'(T) = ,,,,$-+;{@ +@}I 
A 

dA + 
s 

(q . n)TdS. (11) 

s, 

The following set of dimensionless variables is 
introduced : 

X = 2x/D,Pe; Y = y/R; 

u+ = u/u,,, = 1 - Y2 ; 
T-T 

(IA 

E 

where E = C for case (1) with both wall surface 
temperatures varying linearly, and E = - q,D Jk 
for case (2) with a constant heat flux, qw (which 
is positive when directed outwards) at the upper 
wall and insulated at the lower wall. 8 as defined 
above, will always be positive whatever the 
signs of C and q,, Non-dimensionalising equa- 
tions (10) and (1 l), we obtain: 

ae -zz 
‘+ax 

1 a28 a28 
8 (2Pe)ZaX2+fl [ 1 (12) 

x (ET + (;)‘}]dXdY 

+ & 
s 

(4. n) 0 dS. (13) 

s, 
When triangular elements are used, the unknown 
function 13 may be approximated as varying 
linearly within the elements. Thus within an 
element, 

8 = c(r + a,x + cr,Y (14) 

where aI, a2, a3 are known functions of the 
nodal values Bi, 0, and 8,. Rearranging equa- 
tion (14) we may express 8 as a function of the 
nodal values as follows: 

where 

8 = iviei + ivjej + N,e, (15) 

Ni = &(Ui + biX + CRY), 

ai = XjYm - x,E;, 

bi = q - Y,, 

ci = X, - Xj,etc. (16) 



HEAT TRANSFER BETWEEN PARALLEL PLANES 1061 

As defined above, 8 is unique and continuous 
everywhere and its first derivatives are finite 
at the element boundaries. Hence, equation (5) 
holds and 

I = c I’. 
e 

For I to be a minimum with respect to the 
nodal values of 8, 

for all i. 
Now 

al 
q= c are o 

-= 
aei 

e 

dXdY+I: 

(17) 

(18) 

where 

z: = j--& (q.@dS. s 
s40 

1: exists only for elements forming the boun- 
dary S,. Hence 

are -= 
aei ‘+ 

a0 ae 

- -+8 
i ae a 

ax * aei (2Pe)Zax’ae, 

$g)+$$(;)}]dXdY+$ 

= ss [(l - Y')(u~ + b,X + CRY) 

e 

x (biBi + bjej + b,8,)/(4A2)] dX dY 

2 

+ 1 [ 
L(b.8. 
(2Pe)2 ’ ’ + bjej + b,8,) 

+ Ci(Cfei + Cjej + C,e,) 1 ar: 
+ G. 

Letting 

Ji = SS(l - Y’)(ai + b,X + ciY)dXdI: 
e 

g = 1 h,8, + 2 
I j I 

where 

hij = f$ + b.b. 2c.c. __!__L + --a. 
2APe2 A (19) 

For case (2) where a non-zero heat flux boun- 
dary condition occurs along the upper wall 
surface, 

1; = & 
s 

q,8dx = - 2 8dX. (20) 
s 

ss % 

For an element (i, j, m) whose side im forms part 
of the boundary surface S, (see Fig. 3) the 

qw 
1 * 

m T 
J 

FIG. 3. Element with heat flux on surface im. 

variation of 8 along the side im is given by 

e = ei + (s/l) (e, - ei). (21) 

Hence, from equation (20) 

=-- 

I 

2 
si 

4 

0 

+ f(em - ei) ds 
1 

= 

Hence 

In general, 

- l(ei + e,). 

s_ 
aei - -‘. 

gt_ 
aei 

- -p/6fi 
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where f is a node on S,, I‘$ is the length of the 
side of the particular triangular element e form- 
ing part of S,, 

and ~5,~ = 
liff=i 

0 if f # i: 

Hence the elemental contribution {~Z/C%}~ 
the differential aZ/M may be summarised 
follows : 

to 
as 

= [h]’ p>= + ar, e {as) (22) 
are II ae, 

where 

8i 

II 

{e}e = ej . 

I J 0, 
In accordance with equation (17), summing 

the contributions from all the elements in the 
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region to al/at), and equating this sum to zero 
will yield an equation for the node i. Thus a set 
of linear algebraic equations involving the 
nodal values of 8 as unknowns is obtained 
which may be summarised as follows: 

[h] {(II} + {P> = 0. (23) 

Equation (23) is then modified for boundary 
conditions involving specified values of temp- 
erature. The solution of equation (23) will give 
the required values of 8 at the nodes. 

(b) Computational methods 
The problem region is divided up into a mesh 

of triangular “finite elements” illustrated in 
Fig. 4. The elements are smaller near the wall 
and the entrance since it is expected that 
temperature gradients will be greater in these 
regions. The ease with which the size of the 
elements can be graded in this way to accommo- 
date large temperature gradients is one of the 
outstanding features of the finite element method. 

For case (l), in which the temperature at both 
wall surfaces varies linearly, the symmetry of 
the problem permits that only the upper half of 
the region need be considered. The length of the 
mesh is chosen to be just large enough that the 

FIG. 4. A typical 13 x 11 mesh. 
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right hand boundary is in the thermally developed 
region, for which the temperature profile is 
known. 

The fully developed temperature profile for 
case (1) is 

0 = X - &(Y” - 6Yz + 5) 

and for case (2), with one wall at constant heat 
flux and the other insulated, it is 

39 
0 = 1.5X + &Y + 6Yz - Y4) - - 

2240 . 

At the entrance section, of course, 8 = 0 for 
all Y Thus for both cases, the temperature at the 
left and right hand boundaries of the problem 
region are known. For case (l), the temperature 
at the upper boundary is given by the wall 
temperature, 8 = X; at the lower boundary the 
condition of zero heat flux ka(T - T,)/dy = 0 is 
imposed. (It may be noted here that in the case 
of a boundary with zero heat flux, I, is zero for 
this boundary.) For case (2), the boundary 
conditions at the upper and lower boundaries 
are k a( T - T,)/dy = - q, and k a( T - T,)/dy = 0, 
respectively. 

Owing to the manner in which it is assembled 
from the contributions of each element, the 
matrix [hJ is banded centrally about the 
diagonal. Generally, the width of the band will 
vary from row to row depending on how the 
region is discretised and nodes numbered. At 
the ith row, the width of the band will be the 
difference between the largest and smallest nodal 
numbers adjoining i. For the problem con- 
sidered, [II] is unsymmetric. 

To solve equation (23) directly by using, say, 
the Gauss-Jordan elimination procedure would 
be very inefficient in terms of computer time and 
storage, since that does not take advantage of 
the banded nature of [h]. It appears that the 
most efficient procedure is to store those 
elements of [II] that are within the band row- 
wise in a single vector, {H} and employ a 
modified Gaussian elimination method with 

back substitution which takes advantage of the 
banded nature of [h]. In this procedure, Gaussian 
elimination and back substitution need only be 
carried out up to the lower and upper edges 
respectively of the band. Thus the zeros of [II] 
outside the band are not operated upon and are 
actually not stored in (If}. With this method of 
solution, it will be necessary to know the width 

I 
I 1 

Generate element numbers, nodal numbers 
and co-ordinates 

I Generate known boundary temperatures 

and the corresponding nodal numbers 

Determine the width of the band 
and the location of the diagonal elements 

ot each row of h 

I 
I I 

Prescribe boundary temperatures 

r I 
Calculate (dO/dy),,, em,,, and NU, 

at each sectton 

Calculate d8/dx and d’Q/d? I 

Print results 

FIG. 5. Flow chart of computer programme. 
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of the band and the location of the diagonal 
element within the band at every row of [h]. 

The various stages in the solution of the 
convection heat transfer problem by the finite 
element method are illustrated by the flow 
chart of Fig. 5. 

For calculating the temperature gradients at 
the wall, two methods are available. The first is 
to note that within an element 

g = j&9i + cjej + &em). 

Hence we may calculate the values of M/aY 
associated with all the elements adjoining the 
node at the wall and take the average of these as 
the temperature gradient (&?/aY),,, at that point 
on the wall. This method, however, is not 
accurate as the approximation will be of the 
first order only. The alternative method is to 
employ a finite difference formula; this will be 
more accurate as a higher order approximation 
may be employed. For the numerical results 
presented below, a three-point finite difference 
formula was used. The same comments apply to 
the calculation of %/ax and a2tI/aX2. 

The mixed mean temperature at any section 
is 

1 

em,=; f u+edI: 
-1 

The integration across the section is performed 
numerically using Simpson’s one-third and/or 
three-eight rules. The local Nusselt number, 
Nu,, is calculated from 

Nu = 4(ae/aY), 
x 

0, - 0,; 

COMPARISON WITH THEORETICAL SOLUTIONS 

Theoretical solutions to the problem of con- 
vection heat transfer between two parallel planes 
subject to all the different boundary conditions 
listed earlier have been obtained [4] with the 

DE VAHL DAVIS 

first term in the bracket ofequation (12)neglected. 
Physically, this is tantamount to neglecting heat 
conduction in the direction of the flow. For large 
PC&t number flow, this is obviously justified. 
In order to make a comparison between num- 
erical and theoretical results, the same term is 
neglected in the numerical solution, although it 
could be easily included as long as a PC&t 
number is specified. 

Case (1): Both wall surface temperatures linearly 
varying 

Figure 6(a) shows the temperature profiles 
obtained by the finite element method for this 
case. These are in accordance with what one 
would expect for this problem. At small values 
of X, virtually no heat is transported to the 

1 1 

0 0 05 010 c 

Fully== 
developed 

profiles 

Temperature. 8=T-& 
C 

FIG. 6(a). Temperature profiles. Case 1: Both wall tempera- 
tures varying linearly. 21 x 25 mesh. 

central region, causing the temperature there to 
remain practically zero. For larger values of X, 
the temperature profiles gradually become fully 
developed. The transverse temperature gradient 
at the centreline is zero as required by symmetry. 
Figure 6(b) shows that the temperature gradient 
at the wall starts from zero and rapidly increases 
to a limiting value of 00835; this agrees very 
well with the theoretical value of O-0833. The 
axial variation of the mixed mean temperature 
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0 06 

005 

0 04 

003 

0.02 

0 01 

21 x25 mesh (length = 0.72) 

-Theoretical [6] 

J 

FIG. 6(b). Variation of Z@,@y. Case 1: Both wall t~m~ra~res 
varying linearly. 

V 21 x 25 mesh 
(length 0.72) 

- Theorelical [S] 

FIG. 6(c). Axial variation of 0 mm. Case 1 
temperatures varying linearly. 

Both wall 

0 - :: Theoretbcal [6] 

-I 

i 

c 21 x 25 mesh (length =0.72) 
A 21x25 mesh (length=O~l44) 

2 1 / 

0001 0 01 01 10 

,y.a_ 
Dn Pe 

FIG. 6(d). Variation of AkY Case 1: Both wall tem~ratu~s 
varying linearly. 
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08 

06 

04 

02 

-06 

Fully developed 
temperature proflle 

FIG. 7(a). Temperature profiles. Case 2: Upper wall with a 
constant heat flux, lower wall insulated. 

Theoretic01 &n 

e 
1 
‘; 
$ 02 

E 
z 

6 

E 

P 2 o 22x29 mesh (length =O-168) 01 

A 24x29 mesh (length =0.1255) 

0 01 02 

00 

FIG. 7(b). Axial variation of 0 mm. Case 2: Upper plate 
constant heat flux, lower plate insulated. 
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-Theoret~col [4] 
o 24x 29 (length = 0.251) 
&.24x29 (length = 0.1255) 

1067 

3 

FIG. 7(c). Variation of Nu,. Case 2: Upper wall with constant 
heat flux, lower wall insulated. 

is plotted and compared with the theoretical 
solution in Fig. 6(c). The slope of the 8M vs. X 
curve tends to a value of 1 as expected, since in 
the fully developed region 80/8x = 1 for all Y 

The computed variation of the local Nusselt 
number Nu, in the direction of flow is plotted 
and compared with the theoretical solution in 
Fig. 6(d). Agreement between the numerical and 
theoretical solutions is generally very good 
except near the entrance. The Nusselt number at 
the entrance section is of course infinite but 
rapidly decreases to a limiting value of 8.24. 
That this occurs in the numerical solution 
confirms that the temperature profile is fully 
developed at exit from the solution region. This 
is further confirmed by the fact that, at exit, the 
average value across the channel of %/8X has 
risen to l-00 almost exactly and that of a28/aX2 
has fallen to zero almost exactly. 

Case (2): Upper wall with a constant heat flux; 
lower wall insulated 

The temperature profiles obtained by the 
finite element method are plotted in Fig. 7(a). 

Again, these are seen to be as expected. For 
small values of X the temperature is practically 
zero for the region away from the upper wall. 
At the lower wall iM/aY is zero as that wall is 
insulated. All along the upper wall atI/aY is 
equal to the theoretical dimensionless tempera- 
ture gradient of O-25 within 1 per cent. The axial 
variation of the mixed mean temperature is 
plotted and compared with the theoretical 
solution 8 _ = 1.5 X in Fig. 7(b). The axial 
variation of the local Nusselt number of the 
upper wall obtained numerically is plotted in 
Fig. 7(c), and compared with the theoretical 
values from [4]. 

The agreement between numerical and 
theoretical solutions is again very good. The 
local Nusselt number at the upper wall is 
infinite at the entrance but rapidly decreases to a 
limiting value of 5-40. The occurrence of a 
limiting local Nusselt number in the numerical 
solution coupled with the fact that the average 
values of 80/8X and H3/aX2 across the exit 
section have reached 1.5 and zero respectively, 
confirm that the temperature profile at the exit 
is in fact fully developed. 
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CONCLUSION 

The good agreement between numerical and 
theoretical solutions verifies the validity of the 
finite element method. The equivalent minimiza- 
tion functionals for heat and mass transfer and 
for fluid motion are available [2]. Theoretically 
therefore, it should be possible to solve numeric- 
ally any physical problem involving heat or mass 
transfer or fluid motion by the finite element 
method. 

suggesting that if the sizes of the elements are 
small enough, a linear approximation of the 
unknown function within the element is 
adequate. Owing to the simpler formulation and 
the ability to cater for arbitrary boundary 
shapes, the three-node triangular element seems 
to be adequate for most purposes. 

For the convection heat transfer problem 
considered, the computational procedure is 
relatively uncomplicated due to the obvious 
simplicity of the problem. The set of equations 
obtained is linear in the nodal values of tempera- 
ture permitting the use of the well-established 
Gaussian elimination and back substitution 
method for its solution. The evaluation of 

The chief attractions of the finite element 
method include the ease with which the size and 
orientation of the elements can be adjusted to 
cater for regions of high function gradients and 
arbitrary boundaries respectively. With finite 
difference methods, on the other hand, variable 
mesh sizes are used only with considerable 
complexity and problems with irregular bound- 
aries cannot be readily solved. Moreover, the 
imposition of flux boundary conditions can be 
achieved more accurately and easily with finite 
element methods. 

.J; = JJu+(ui + b,X + c,Y) dX dY 
e 

presented no difficulty since u+ in this case is 
only a simple function of Y In other situations 
where the velocity u is a complicated function of 
x and y, Ji may have to be evaluated numerically 
using a quadrature formula which brings with 
it additional errors. 

A further complication arises in many physical 
problems when the velocity distribution cannot 
be obtained analytically. Using the appropriate 
minimization functional, a set of equations for 
the nodal velocities can be obtained. This is no 
longer linear, and alternative methods of solution 
must be adopted. 

However, the FEM suffers from some draw- 
backs. Firstly, the truncation error incurred by 
using a particular element shape cannot be 
calculated. With the FDM, on the other hand, 
the truncation error involved in any finite 
difference formula can be calculated using the 
calculus of finite differences. However, the order 
of approximation of a particular element shape 
is known, and we can say that the truncation 
error incurred will be comparable with that of a 
finite difference mesh of the same size. 

In this paper, only the three-node triangular 
element is employed. Other element shapes [3] 
may be used, but with greater difficulty. The use 
of the six-node triangular element enables a 
quadratic approximation of the unknown func- 
tion within the element to be made; it will 
however involve the integration of several 
complicated functions of x and y over the area of 
the element, which may best be done numerically 
using a quadrature formula. 

When a higher order of approximation to the 
unknown function is sought, the situation 
usually becomes complex with the FEM, involv- 
ing difftcult area integrations. With the FDM, 
increasing the order of approximation presents 
no real difficulty. 

Nevertheless, the three-node triangular ele- 
ment seemed to give quite accurate results 
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APPLICATIONDE LA M~THODEAUX ~LBMENTS FINISAUTRANSFERT 
THERMIQUE PAR CONVECTION ENTRE DEUX PLANS PARALLeLES 

RCsamb-On decrit la base de la mCthode aux ClCments finis appliqute g une tquation aux dtrivCes partielles 
et la procedure numerique associte. La mtthode est alors appliqute au probltme du transfert thermique 
par convection. Le probltme consiste en la d&termination de la distribution de tempkrature et de la variation 
axiale du nombre de Nusselt local pour un fluide B proprittb physiques constantes qui s’Ccoule entre 
deux plans infinis et parall&les dont les tempkratures supcrficielles et les flux thermiques sont don&s. 
L’Bcoulement est hydrodynamiquement dCveloppt. La validit de la mt?thode est veri!Xe et quelques uns 

de ses aspects discutts. 

ANWENDUNG DESDIFFERENZENVERFAHRENSAUFDEN 
W;iRMELEITUNGSVORGANGZWISCHENEBENENPLATTEN 

Zusammenfassung--Es werden die Grundlagen der zur LGsung von partiellen Differentialgleichungen 
geeigneten Differenzenmethode und die damit zusammenhlngenden numerischen Probleme erBrtert. 
Die Methode wird auf ein Wlrmeleitungsproblem angewandt, bei dem die Temperaturverteilung und die 
axiale Verlnderung der lokalen Nusselt-Zahl fiir eine Fliissigkeit mit konstanten Stoffwerten gesucht sind, 
ticlche zwischen zwei unendlich ausgedehnten parallelen Plattcn striimt, auf denen Oberfllchentempera- 
turen oder Wlrmestromdichten vorgeschrieben sind. Die Striimung sei hydrodynamisch ausgebildet. 

Die Giiltigkeit der Methode wird verifiziert und einige Aspekte der Methode wcrden diskutiert. 

HPMMEHEHLIE METOflX ICOHEqHbIX BJIEMEHTOB &IIH PEIIIEHMR 
3AaA2IH 0 KOHBEKTHBHOM TEHJIOOBMEHE MEmaY IIAPAJIJIEJIbHbIMM 

HJIOCKOCTHMA 

~HHOT~~HJi-~:~~a~a~TCROCHOBbIMeTO~aKOHe~HblX3JleMellTOB npklMeHliTeJlbH0 KpelUeHR10 

~lI@I$epeH~MaJIbHOPO J'paBHeHMR B YaCTHbIX npO&i3BOAHbtX, a TaWKe MeTOHIlKa WlCJIeHHOrO 

peUIeHW. 3TOT MeTOA 3aTeM npHMeHKeTCfl &TIH peQeHI4H 3aAaWl 0 KOHBeKTIlBHOM Tennoo6- 
MeHe. 3anasa COCT~RT B 0npeneneHnkI pacnpeReneH&w TeMnepaTypbI II n3MeHeHxn no OCM 

noKanbIior0 4wxa HyCCeJIbTa nnfl TeqeHHH WMRKOCTH C ~OCTOJIHH~IMH cBoBcTBaMa MeHtny 

~BJ'MR 6eCKOHesHbIMH nap&JIJIeJIbHbIMR IIJIOCKOCTRMH C 3aAaHHbIMEl TeMnepaTypOfi IlJIA 

TenJIOBbIMM nOTOKaMH Ha nOBepXHOCTH. TegeHcle HtClHKOCTll nOJIHOCTbI0 pa3BHTO. npo- 

BOAMTCR npOBepKa npRMeHAMOCT&i MeTOAa, a TaKWe o6cyH(RaH)Tcfi el'0 HeKOTOpbIe aCneKTbI. 


