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Abstract—The basis of the finite element method of solution to a partial differential equation, and the
associated numerical procedure, are outlined. The method is then applied to a convection heat transfer
problem. This problem consists of determining the temperature distribution and the axial variation of the
local Nusselt number for a fluid of constant physical properties flowing between two infinite parallel
planes, at which surface temperatures or heat fluxes are specified. The flow is hydrodynamically developed.
The validity of the method is verified and some aspects of the method discussed.

NOMENCLATURE

A, area;

a,b,c, functions of nodal co-ordinates;

C, longitudinal  surface temperature
gradient;

C, specific heat at constant pressure of
the fluid;

D,, hydraulic diameter, 4R ;

h, convective heat transfer coefficient;

[#],  a matrix defined by equation (19);

I,I', minimization functionals;

i,j,m, mnodes;

k, thermal conductivity of the fluid;

l, length;

N, shape function, defined by equation
(16);

Nu, Nusselt number, hD,/k;

n, normal to surface;

{P}, a matrix defined by equation (23);

Pe, Péclét number, RePr;

Pr, Prandtl number, C,u/k;

0, rate of internal heat generation;

q, heat flux;

R, half plate spacing;

Re, Reynolds number, u,,,, D,/u;

v, position vector;

S, surface;
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s, distance along surface S;
T, temperature;
T, ambient temperature;
t, time;
u, unknown function;
u, x-component of velocity;
u*,  dimensionless velocity, u/u,,,,;
V, volume;
v, velocity;
X, Y, dimensionless cartesian co-ordinates;
x,y, dimensional cartesian co-ordinates;
[]  -matrix;
{},  column vector.
Greek symbols
2, density of the fluid;
4, area of triangular element;

U, absolute viscosity of the fluid;
0, dimensionless temperature (T — T,)/e;
&, temperature non-dimensionalisation
factor;
5 1if f=1i
se {0 if f# .
Subscripts
w, wall;
e, entrance section or element;
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i,j,m, nodes;
mm, mixed mean;
s, surface.
INTRODUCTION

IT 18 well recognized that a physical problem
governed by a set of differential equations may
be equivalently expressed as an extremum prob-
lem by the methods of the calculus of variations
[1, 2]. Thus physical problems governed by the
two-dimensional Poisson equation

o*T T
+0=0 (1)

e thgr T e

+k

subject to the boundary conditions

orT
—k—a;=q ons§,
oT
—k—=nT — T,) on§, 2)
on

may be solved by minimising the following
integral or functional

1 oT\? oT\?
s () + 4 (5) § -oras
A
. f JTdS + j(%hTz _WTTdS ()
Sk

Sq

with respect to the unknown function T. By
variational methods (in particular, Euler’s
theorem), it may be shown that the satisfaction
of equation (1) is a necessary and sufficient
condition to render I stationary.

Physical problems of the Poisson equation
type have been solved numerically by the finite
element method. An excellent description of the
numerical procedure for these and other prob-
lems is given in [3].

Although the equivalent functional for prob-
lems involving transport phenomena are well-
known, few attempts seem to have been made to
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apply the finite element method to such prob-
lems. In this paper, a convection heat transfer
problem is solved numerically by the finite
element method. The purpose of the paper is to
draw attention to the power and flexibility of
the method.

The problem considered is that of a fluid of
constant properties flowing in steady, laminar
motion between two infinite stationary parallel
planes. There is no internal heat generation and
viscous dissipation is neglected. The velocity
profile is fully developed and hence parabolic
(see Fig. 1). The temperature of the fluid upstream

)—~> Start of heat transfer

T
Vas

er N e S
” } Velocity profile,
4o

U=t [1-(£1°]

F1G. 1. Convective heat transfer problem.

of the origin is uniform across the section at T,
Downstream of the origin, heat transfer to the
fluid occurs. The problem is to determine the
temperature distribution and the variation of
the local Nusselt number along the direction of
the flow.

A variety of boundary conditions can be
imposed at the two surfaces. It has been shown
[4] that, because of the linearity of the governing
equation, any arbitrary surface temperature or
surface heat flux boundary condition can be
satisfied by superimposing solutions of two or
more of the four fundamental problems:

A. One surface at a constant temperature
different from that of the entering fluid,
the other surface at the same temperature
as the entering fluid;

B. One surface with a constant heat flux, the
other surface insulated;

C. One surface at a constant temperature
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different from that of the entering fluid, the
other surface insulated;

D. One surface with a constant heat flux, the
other surface at the temperature of the
entering fluid.

All the fundamental solutions, together with
those for both surface temperatures constant
and both linearly varying, have been obtained
using the finite element method. However, for
the purpose of illustrating the application of the
method to problems of this kind, only the
results for the following boundary conditions
will be presented:

1. Both surface temperatures linearly varying

T,=T,+ CX

2. One surface at constant heat flux q,, the
other surface insulated.

Theoretical solutions to these problems of
heat transfer between parallel planes exist; they
will be compared with the numerical solutions
obtained by the finite element method.

SOLUTION BY THE FINITE ELEMENT METHOD

In general terms, the problem facing us is that
of minimising a functional I(u) which consists of
surface and volume integrals over the continuum
space, with respect to an unknown function
u(x, y, ). In order to perform the minimization

y

F1G. 2. Division of problem region into “finite elements”.
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numerically, the problem region is divided into
“finite elements” by imaginary surfaces. In three-
dimensional problems these “finite elements”
may take the form of tetrahedrons, octahedrons,
etc, and in two-dimensional problems they may
be triangles, quadrilaterals or some other
geometrical shape (see Fig. 2). The unknown
function u is then defined in terms of the nodal
values of u. For a triangular element with nodes
i, j, m, for example, the unknown function within
the element is defined by

where u;, u;, u,, which are to be found, are the
values of u at nodes i, j, m respectively, and
N;, N;, N,, are known “shape” functions of the
nodal co-ordinates which must ensure the
uniqueness and continuity of u. The equivalent
functional is then a function of the nodal values
u; which can now be obtained by minimising I
with respect to u;, that is by setting

a_,

Ou;
for all i.

The functional I may be expressed as a

summation of elemental values of I, denoted by
I¢, that is

1=Yr )

Equation (5) is true if u and all its derivatives up
to the (n-1)th order are continuous and finite at
the interface between adjacent elements, where
n is the highest order of the derivative of u
appearing in I.
Hence, the solution is obtained by setting
ore

. G = 0 (6)
for all i. Only elements for which i is a node need
be considered in the summation. For all other
elements, I¢ is independent of u;. Equation (6)
will yield one equation for each node, giving
rise to a set of simultaneous equations in u; equal
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in number to the total number of nodes. Where
boundary conditions involve specified nodal
values of u at the boundary, say U, at mode k,
the set of simultaneous equations needs to be
modified accordingly so as to force u, = U,.
The nodal values of u are then obtained by solving
the set of simultaneous equations for u;.

APPLICATION OF THE FINITE ELEMENT
METHOD TO CONVECTION HEAT TRANSFER

(a) Theory

The governing equation for the problem
considered here is the energy equation with the
dissipation term neglected, which may be written
in vector form as:

oC, <%—f + v.VT)V.(kVT) +0ry (7

subject to
T = T, on surface S;
—kVT = q on surface S, (8)

It has been shown [2] that the equivalent mini-
mization functional is

I'(T) = ”pc,, (%—f + v.V’T)T
Vv

k
+ E(VT)Z - QT]dV + j(q.n)TdS. 9
S'I

T is the stationary value of T and, hence, not
subject to variation. It is the solution of the given
problem.

For the situation described in Fig. 1 the
energy equation reduces to

oT o*T  &*T
pCpu§=k|:ax + yz]

and the equivalent minimization functional to

ORI

1= [[rcn
A
dA + j(q.n)TdS. (11)

(10)
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The following set of dimensionless variables is
introduced:

X = 2x/D,Pe; Y = y/R;

T-T,
&
where ¢ = C for case (1) with both wall surface
temperatures varying linearly, and ¢ = —q,D,/k
for case (2) with a constant heat flux, g,, (which
is positive when directed outwards) at the upper
wall and insulated at the lower wall. 8 as defined
above, will always be positive whatever the
signs of C and ¢,,. Non-dimensionalising equa-
tions (10) and (11), we obtain;
2
+ i—g—} (12)

8 1 0%
0X | 2Pe)?0X?  0Y?
1(6) = 4I(T

are ||t apr
() + (@) oxar

4
k Pe J(q n)6ds. (13)

Sq

ut =ufug,,=1-Y% 0=

When triangular elements are used, the unknown
function # may be approximated as varying
linearly within the elements. Thus within an
element,

9 = 0(1 + a2X + Ot3Y (14)

where a,, a,, a; are known functions of the
nodal values 6,, 6, and §,,. Rearranging equa-
tion (14) we may express 6 as a function of the

nodal values as follows:

where
1
Ni = Z_A(al + biX + CiY)’

~X,Y,

J

a; = X;Y,
bi= Yj'_ Ym’
Ci=Xm

— X, etc. (16)
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As defined above, 6 is unique and continuous
everywhere and its first derivatives are finite
at the element boundaries. Hence, equation (5)
holds and

1=
For I to be a minimum with respect to the
nodal values of 6,

ol or¢

20~ 55~ ° 17

for all i.
Now

) o0 1 (a0

: j f [ x0Tt {(2Pe)2 <ﬁ>
2 )
(ay> HdXdYH (18)

4
I = %ePe J‘(q n)0 ds.

Se

where

I exists only for elements forming the boun-
dary §,. Hence

ar .00 a0 1 89 0
a0, 11"

ax 30, T °\2Per ax 26,
(%
ax

00 0 (a0 oI¢
+ 2 (D) exar+

B JVJ [(1 - Y2) (@; + bX + ¢;Y)

e

x (bf; + b6, + b,0,)/(44*)] dX dY
21 b
+= |:(2P)2(b0 + b;8; + b,0,)

Ie
+ ¢l + ¢c0; + ¢ 9,,,)] 20 .
Letting

Ji= {1 = Y)(a; + bX + ¢,Y)dX dY,
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Z hU J
where
.= Jib; b;b; 2cc;
17447 7 24Pe? 4

h; (19)

For case (2) where a non-zero heat flux boun-
dary condition occurs along the upper wall
surface,

4
¢ =-2]6dXx. (20
IS kﬁ P J\qwe dx J‘ ( )
S S
For an element (i, j, m) whose side im forms part
of the boundary surface S, (see Fig. 3), the

f

FiG. 3. Element with heat flux on surface im.

variation of 6§ along the side im is given by
=0; + (s/1) (6 — 0). (21)
Hence, from equation (20)
Gi)} ds

1

- 2“@ + 706,

0

= — IB; + 6,).
Hence
)
00,
In general,
oI
0 156y



1062

where f is a node on §,, % is the length of the
side of the particular triangular element e form-
ing part of S,

Lif f =i
andéﬁ_{Oiff;éi:

Hence the elemental contribution {d1/06}° to
the differential 0I/00 may be summarised as
follows:

-

ore
26,
one  |or AT
G =% oo {5 e
or
a6,
where
0
{H}e = 91
0

In accordance with equation (17), summing
the contributions from all the elements in the
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region to 01/00, and equating this sum to zero
will yield an equation for the node i. Thus a set
of linear algebraic equations involving the
nodal values of 6 as unknowns is obtained
which may be summarised as follows:

[x1{6} + {P} =O. (23)

Equation (23) is then modified for boundary
conditions involving specified values of temp-
erature. The solution of equation (23) will give
the required values of @ at the nodes.

(b) Computational methods

The problem region is divided up into a mesh
of triangular “finite elements” illustrated in
Fig. 4. The elements are smaller near the wall
and the entrance since it is expected that
temperature gradients will be greater in these
regions. The ease with which the size of the
elements can be graded in this way to accommo-
date large temperature gradients is one of the
outstanding features of the finite element method.

For case (1), in which the temperature at both
wall surfaces varies linearly, the symmetry of
the problem permits that only the upper half of
the region need be considered. The length of the
mesh is chosen to be just large enough that the

11 22 33 44 55 66 7 88 99 110 121 132 143
10|/21,732| /43| 54 65 76 87 98 108 120] 131 142
9| 720,/31, 742 53 64 75 86 87 108 19 — 130 141
8719|730, 4%,/52 63 74 85 96 ~ 107 18 - 129 — 140
7|/ 18] 729| 740 /51 62 73 84 95 - 106 17 128| 139
6|/ 17,/28|,39,/50 61 72 83 94 105 16 127 138
516,727 /38| 49 60 7 82 93 104 15 126 137
4715726/ 737| 48 59| 70 81 92 103 114 125 136
3| 1425|736 /47 58| 69| 80 91 102 n3 124 — 135
~
2 1 4/ 35/ 46 57] [ 7 90 101 12 123 134
- /}/{/’// e
1Y 12y 23/ 34/ 45 56 67 78| 89 100 mp 122 - 133

FIG. 4. A typical 13 x 11 mesh.
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right hand boundaryisin the thermally developed
region, for which the temperature profile is
known.

The fully developed temperature profile for
case (1) is

1
=X — —(Y*-6Y? +
6= X — 5l 6 5)

and for case (2), with one wall at constant heat
flux and the other insulated, it is
39

1 2 4
0= 15X + ZBY +6Y? — ¥*) — —2.

At the entrance section, of course, 8 = 0 for
all Y. Thus for both cases, the temperature at the
left and right hand boundaries of the problem
region are known. For case (1), the temperature
at the upper boundary is given by the wall
temperature, # = X ; at the lower boundary the
condition of zero heat flux k(T — T))/0y = O is
imposed. (It may be noted here that in the case
of a boundary with zero heat flux, I, is zero for
this boundary.) For case (2), the boundary
conditions at the upper and lower boundaries
are k(T — T))/0y = —q,,andk (T — T,)/dy =0,
respectively.

Owing to the manner in which it is assembled
from the contributions of each element, the
matrix [h] is banded centrally about the
diagonal. Generally, the width of the band will
vary from row to row depending on how the
region is discretised and nodes numbered. At
the ith row, the width of the band will be the
difference between the largest and smallest nodal
numbers adjoining i. For the problem con-
sidered, [h] is unsymmetric.

To solve equation (23) directly by using, say,
the Gauss—Jordan elimination procedure would
be very inefficient in terms of computer time and
storage, since that does not take advantage of
the banded nature of [h]. It appears that the
most efficient procedure is to store those
elements of [h] that are within the band row-
wise in a single vector, {H} and employ a
modified Gaussian elimination method with
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back substitution which takes advantage of the
banded nature of [ #]. In this procedure, Gaussian
elimination and back substitution need only be
carried out up to the lower and upper edges
respectively of the band. Thus the zeros of [h]
outside the band are not operated upon and are
actually not stored in {H}. With this method of
solution, it will be necessary to know the width

Generate element numbers, nodal numbers
and co-ordinates

Generate known boundary temperatures
and the corresponding nodal numbers

Determine the width of the band
and the location of the diagona! elements
at each row of A

I

Set up » and {p}

|

Prescribe boundary temperatures

Solve A~ to obtain
{IB}

Calcuiate (d6/dY),, B, and wu,

at each section

Calculate J8/dX and J°8/9x°

F1G. 5. Flow chart of computer programme.
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of the band and the location of the diagonal
element within the band at every row of [h].

The various stages in the solution of the
convection heat transfer problem by the finite
element method are illustrated by the flow
chart of Fig. 5.

For calculating the temperature gradients at
the wall, two methods are available. The first is
to note that within an element

00 1
Y = 24 (ci0; + c;8; + cub,).
Hence we may calculate the values of 06/0Y
associated with all the elements adjoining the
node at the wall and take the average of these as
the temperature gradient (66/0Y),, at that point
on the wall. This method, however, is not
accurate as the approximation will be of the
first order only. The alternative method is to
employ a finite difference formula; this will be
more accurate as a higher order approximation
may be employed. For the numerical results
presented below, a three-point finite difference
formula was used. The same comments apply to
the calculation of 80/0X and 8%6/0X.

The mixed mean temperature at any section
is

1
O =2 [ u* 04dY.
-1

The integration across the section is performed
numerically using Simpson’s one-third and/or
three-eight rules. The local Nusselt number,
Nu,, is calculated from

_ 4(26/0Y),,
= gw - Hmm'

COMPARISON WITH THEORETICAL SOLUTIONS

Theoretical solutions to the problem of con-
vection heat transfer between two parallel planes
subject to all the different boundary conditions
listed earlier have been obtained [4] with the

DE VAHL DAVIS

first termin the bracket of equation (12) neglected.
Physically, this is tantamount to neglecting heat
conduction in the direction of the flow. For large
Péclét number flow, this is obviously justified.
In order to make a comparison between num-
erical and theoretical results, the same term is
neglected in the numerical solution, although it
could be easily included as long as a Péclét
number is specified.

Case (1): Both wall surface temperatures linearly
varying

Figure 6(a) shows the temperature profiles
obtained by the finite element method for this
case. These are in accordance with what one
would expect for this problem. At small values
of X, virtually no heat is transported to the

T T
3
o~?5»80'
le! K
?*
X
e
U . -
o o5
025} Fully=—=
developed
profiles
i 1 1
S 005 010 015 020 025 030 O3

Temperature, 8= IC:.Z'T

FiG. 6(a). Temperature profiles. Case 1: Both wall tempera-
tures varying linearly. 21 x 25 mesh.

central region, causing the temperature there to
remain practically zero. For larger values of X,
the temperature profiles gradually become fully
developed. The transverse temperature gradient
at the centreline is zero as required by symmetry.
Figure 6(b) shows that the temperature gradient
at the wall starts from zero and rapidly increases
to a limiting value of 0-0835; this agrees very
well with the theoretical value of 0-0833. The
axial variation of the mixed mean temperature
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009 Theoretical limiting 03
value, 0-0833 o
ue —
¢Q8 £
E
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0-07
¥ o2
seer
006 g
Q.
E
Q
005 -
P =
P 2ix25 mesh (length=0-72) ®
Bl . £ Ot
2 004t — Theoretical [6]
b1
X
003 =
O,
02 o
N
| ! ) L ! ]

V 2ix25 mesh

(length 0-72)

— Theoretical [6]

02 03 05 086 o7

04
2x
. Pe

F1G. 6(b). Variation of 88/8y. Case 1: Both wall temperatures

varying linearly.

Local Nusselt number, MNu,

50

S

e N WY W S D S P

— Theoretical [6]
o 21 x25 mesh {length=0-72)
A 2ix25 mesh {iength=0-144)

0-001

0-0i Ol

0, Pe

Fi1G. 6(d). Variation of Nu,. Case 1: Both wall temperatures

varying linearly.

Fi1G. 6(c). Axial variation of § mm. Case 1: Both wall
temperatures varying linearly.
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Mixed mean temperature,
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Q
n
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1-0
o8 —/%0025

[ X =0-0005

Fully developed

-0-2 )
temperature profile
-04
-06
-08
-1-0 L S
0 02 o3 0-4
T—Te
8 Gwor
-(GW D, )
K

F1G. 7(a). Temperature profiles. Case 2: Upper wall with a
constant heat flux, lower wall insulated.

002
Theoreticol §mm
N
001}
T~Theoretical
Omm
O 22x29 mesh (length =0-168)
A 24x29 mesh (length =0:1255)
; | !
0l 02 o ool
_2X
X= e

F1G. 7(b). Axial variation of 8 mm. Case 2: Upper piate
constant heat flux, lower plate insulated.
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50

.

Local Nusselt number, Au,
o

— Theoretical [4]
024x29 (length = 0-251)
A24x29 (length=0-1255)

0001 001

F1G. 7(c). Variation of Nu,. Case 2: Upper wall with constant
heat flux, lower wall insulated.

is plotted and compared with the theoretical
solution in Fig. 6(c). The slope of the 8, vs. X
curve tends to a value of 1 as expected, since in
the fully developed region 00/0x = 1 for all Y.

The computed variation of the local Nusselt
number Nu, in the direction of flow is plotted
and compared with the theoretical solution in
Fig. 6(d). Agreement between the numerical and
theoretical solutions is generally very good
except near the entrance. The Nusselt number at
the entrance section is of course infinite but
rapidly decreases to a limiting value of 8-24.
That this occurs in the numerical solution
confirms that the temperature profile is fully
developed at exit from the solution region. This
is further confirmed by the fact that, at exit, the
average value across the channel of 76/0X has
risen to 1-00 almost exactly and that of 820/0X>
has fallen to zero almost exactly.

Case (2): Upper wall with a constant heat flux;
lower wall insulated

The temperature profiles obtained by the
finite element method are plotted in Fig. 7(a).

Again, these are seen to be as expected. For
small values of X the temperature is practically
zero for the region away from the upper wall.
At the lower wall 36/0Y is zero as that wall is
insulated. All along the upper wall 00/8Y is
equal to the theoretical dimensionless tempera-
ture gradient of 0-25 within 1 per cent. The axial
variation of the mixed mean temperature is
plotted and compared with the theoretical
solution 6,, = 15 X in Fig. 7(b). The axial
variation of the local Nusselt number of the
upper wall obtained numerically is plotted in
Fig. 7(c), and compared with the theoretical
values from [4].

The agreement between numerical and
theoretical solutions is again very good. The
local Nusselt number at the upper wall is
infinite at the entrance but rapidly decreases to a
limiting value of 5-40. The occurrence of a
limiting local Nusselt number in the numerical
solution coupled with the fact that the average
values of 00/6X and 9%6/0X? across the exit
section have reached 1S and zero respectively,
confirm that the temperature profile at the exit
is in fact fully developed.
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CONCLUSION

The good agreement between numerical and
theoretical solutions verifies the validity of the
finite element method. The equivalent minimiza-
tion functionals for heat and mass transfer and
for fluid motion are available [2]. Theoretically
therefore, it should be possible to solve numeric-
ally any physical problem involving heat or mass
transfer or fluid motion by the finite element
method.

For the convection heat transfer problem
considered, the computational procedure is
relatively uncomplicated due to the obvious
simplicity of the problem. The set of equations
obtained is linear in the nodal values of tempera-
ture permitting the use of the well-established
Gaussian elimination and back substitution
method for its solution. The evaluation of

presented no difficulty since u* in this case is
only a simple function of Y. In other situations
where the velocity u is a complicated function of
x and y, J; may have to be evaluated numerically
using a quadrature formula which brings with
it additional errors.

A further complication arises in many physical
problems when the velocity distribution cannot
be obtained analytically. Using the appropriate
minimization functional, a set of equations for
the nodal velocities can be obtained. This is no
longer linear, and alternative methods of solution
must be adopted.

In this paper, only the three-node triangular
element is employed. Other element shapes [3]
may be used, but with greater difficulty. The use
of the six-node triangular element enables a
quadratic approximation of the unknown func-
tion within the element to be made; it will
however involve the integration of several
complicated functions of x and y over the area of
the element, which may best be done numerically
using a quadrature formula.

Nevertheless, the three-node triangular ele-
ment seemed to give quite accurate results

DE VAHL DAVIS

suggesting that if the sizes of the elements are
small enough, a linear approximation of the
unknown function within the element is
adequate. Owing to the simpler formulation and

tha ohilite
e auviuky

cater for arbitrary boundary
shapes, the three-node triangular element seems
to be adequate for most purposes.

The chief attractions of the finite element
method include the ease with which the size and
orientation of the elements can be adjusted to
cater for regions of high function gradients and
arbitrary boundaries respectively. With finite
difference methods, on the other hand, variable
mesh sizes are used only with considerable
complexity and problems with irregular bound-
aries cannot be readily solved. Moreover, the
imposition of flux boundary conditions can be
achieved more accurately and easily with finite
element methods.

However, the FEM suffers from some draw-
backs. Firstly, the truncation error incurred by
using a particular element shape cannot be
calculated. With the FDM, on the other hand,
the truncation error involved in any finite
difference formula can be calculated using the
calculus of finite differences. However, the order
of approximation of a particular element shape
is known, and we can say that the truncation
error incurred will be comparable with that of a
finite difference mesh of the same size.

When a higher order of approximation to the
unknown function is sought, the situation
usually becomes complex with the FEM, involv-
ing difficult area integrations. With the FDM,
increasing the order of approximation presents
no real difficulty.

o~
w
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APPLICATION DE LA METHODE AUX ELEMENTS FINIS AU TRANSFERT
THERMIQUE PAR CONVECTION ENTRE DEUX PLANS PARALLELES

Résumé—On décrit la base de la méthode aux éléments finis appliquée a une équation aux dérivées partielles

et la procédure numérique associée. La méthode est alors appliquée au probléme du transfert thermique

par convection. Le probléme consiste en la détermination de la distribution de température et de la variation

axiale du nombre de Nusselt local pour un fluide & propriétés physiques constantes qui s’écoule entre

deux plans infinis et paralleles dont les températures superficielles et les flux thermiques sont donnés.

L’écoulement est hydrodynamiquement développé. La validité de la méthode est verifiée et quelques uns
de ses aspects discutés.

ANWENDUNG DES DIFFERENZENVERFAHRENS AUF DEN
WARMELEITUNGSVORGANG ZWISCHEN EBENEN PLATTEN

Zusammenfassung—Fs werden die Grundlagen der zur Losung von partiellen Differentialgleichungen

geeigneten Differenzenmethode und die damit zusammenhidngenden numerischen Probleme erdrtert.

Die Methode wird auf ein Wirmeleitungsproblem angewandt, bei dem die Temperaturverteilung und die

axiale Verdnderung der lokalen Nusselt-Zahl fiir eine Fliissigkeit mit konstanten Stoffwerten gesucht sind,

welche zwischen zwei unendlich ausgedehnten parallelen Platten strémt, auf denen Oberflichentempera-

turen oder Wirmestromdichten vorgeschrieben sind. Die Strémung sei hydrodynamisch ausgebildet.
Die Giiltigkeit der Methode wird verifiziert und einige Aspekte der Methode werden diskutiert.

NPUMEHEHUE METOJA KOHEYHbLIX 3JEMEHTOB [JA PEIIEHUA
3AJJAYN O HOHBEKTUBHOM TEINUIOOBMEHE MEKAY NAPAJJIEJILHBLIMU
IIJIOCKROCTAMU

AHHOTAIHA—U3I1araI0TCA OCHOBH METOAA KOHEUYHHIX 3JIEMEHTOB IPHMEHUTEIbHO K PelieHuIo
aud@epennMalbiOr0 ypaBHEHNA B YACTHHIX NPOUBBOJHBIX, & TaKHe METONNKA YUCIEHHOro
peleHuA. DTOT METON, 3aTeM NPUMEHAETCA JJIA pelleHUuA 33a/ja4ll 0 KOHBEKTHBHOM TeII000-
MeHe. 3afa4a COCTOMT B ONpENeJeHHM pAacCHpefelieHHA TeMIepaTypsl W U3MEHeHMA N0 OCH
noKanbHOro vnciaa Hyccenbra fyA TeueHMA MIKOCTH € MOCTOAHHHIMU CBOMCTBAMU Memy
ABYMA OECHOHEYHBHIMM TNAPAJIENBHBIMH IIOCKOCTAMH C BaJaHHBIMH TEMIepaTypol wim
TETJIOBHIMM TNOTOKAMH HA MOBEPXHOCTH. TeveHne KHMAKOCTM NOJHOCTBIO pasButo. IIpo-
BOJAMTCA NPOBEPKA MPMMEHUMOCTH METO/a, A TaKi<e OGCYKAANTCA ero HEKOTOPHE ACHEKTH.



